An Optimal Deterministic Algorithm for Geodesic Farthest-Point Voronoi Diagrams in Simple Polygons

نویسندگان

چکیده

Given in the plane a set S of m point sites simple polygon P n vertices, we consider problem computing geodesic farthest-point Voronoi diagram for P. It is known that has an $$\Omega (n+m\log m)$$ time lower bound. Previously, randomized algorithm was proposed [Barba, SoCG 2019] solves $$O(n+m\log expected time. The previous best deterministic algorithms solve $$O(n\log \log n+ m\log [Oh, Barba, and Ahn, 2016] or m+m\log ^2\!n)$$ [Oh 2017]. In this paper, present takes time, which optimal. This answers affirmatively open question posed by Mitchell Handbook Computational Geometry two decades ago.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Geodesic Farthest-point Voronoi Diagram in a Simple Polygon

Given a set of point sites in a simple polygon, the geodesic farthest-point Voronoi diagram partitions the polygon into cells, at most one cell per site, such that every point in a cell has the same farthest site with respect to the geodesic metric. We present an O(n log log n+m logm)time algorithm to compute the geodesic farthest-point Voronoi diagram of m point sites in a simple n-gon. This i...

متن کامل

Realizing Farthest-Point Voronoi Diagrams

1 The farthest-point Voronoi diagram of a set of n sites 2 is a tree with n leaves. We investigate whether arbi3 trary trees can be realized as farthest-point Voronoi di4 agrams. Given an abstract ordered tree T with n leaves 5 and prescribed edge lengths, we produce a set of n sites 6 S in O(n) time such that the farthest-point Voronoi di7 agram of S represents T . We generalize this algorithm...

متن کامل

Farthest-Polygon Voronoi Diagrams

Given a family of k disjoint connected polygonal sites in general position and of total complexity n, we consider the farthest-site Voronoi diagram of these sites, where the distance to a site is the distance to a closest point on it. We show that the complexity of this diagram is O(n), and give an O(n log n) time algorithm to compute it. We also prove a number of structural properties of this ...

متن کامل

Farthest line segment Voronoi diagrams

The farthest line segment Voronoi diagram shows properties different from both the closest-segment Voronoi diagram and the farthest-point Voronoi diagram. Surprisingly, this structure did not receive attention in the computational geometry literature. We analyze its combinatorial and topological properties and outline an O(n log n) time construction algorithm that is easy to implement. No restr...

متن کامل

The Farthest-Point Geodesic Voronoi Diagram of Points on the Boundary of a Simple Polygon

Given a set of sites (points) in a simple polygon, the farthest-point geodesic Voronoi diagram partitions the polygon into cells, at most one cell per site, such that every point in a cell has the same farthest site with respect to the geodesic metric. We present an O((n + m) log logn)time algorithm to compute the farthest-point geodesic Voronoi diagram for m sites lying on the boundary of a si...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete and Computational Geometry

سال: 2022

ISSN: ['1432-0444', '0179-5376']

DOI: https://doi.org/10.1007/s00454-022-00424-6